The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass

Phillips  SM. Nutrition & Metabolism (2016) 13:64. DOI 10.1186/s12986-016-0124-8      Link to publication


“Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS>MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signaling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodeling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.”

Supplemental protein in support of muscle mass and health: advantage whey

Devries MC & Phillips SM 2015. Journal of Food Science, 80, S1    Link to publication


“Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging.”

Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance

Traylor DA, Gorissen SHM, Phillips SM. Adv Nutr. 2018 May 1;9(3):171-182. doi: 10.1093/advances/nmy003   Link to publication


“The Dietary Reference Intakes set the protein RDA for persons >19 y of age at 0.8 g protein kg body weight-1 d-1. A growing body of evidence suggests, however, that the protein RDA may be inadequate for older individuals. The evidence for recommending a protein intake greater than the RDA comes from a variety of metabolic approaches. Methodologies centered on skeletal muscle are of paramount importance given the age-related decline in skeletal muscle mass and function (sarcopenia) and the degree to which dietary protein could mitigate these declines. In addition to evidence from short-term experimental trials, observational data show that higher protein intakes are associated with greater muscle mass and, more importantly, better muscle function with aging. We are in dire need of more evidence from longer-term intervention trials showing the efficacy of protein intakes that are higher than the RDA in older persons to support skeletal muscle health. We propose that it should be recommended that older individuals consume ≥1.2 g protein · kg-1 · d-1 and that there should be an emphasis on the intake of the amino acid leucine, which plays a central role in stimulating skeletal muscle anabolism. Critically, the often-cited potential negative effects of consuming higher protein intakes on renal and bone health are without a scientific foundation in humans.”

Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults

Witard OC et al. Nutrients. 2016. 23;8(4)    Link to publication 


"Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS) and is a key factor that regulates skeletal muscle mass (SMM). The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions."